# Towards NPT bound entanglement: computational complexity and field extensions 

Mirte van der Eyden ${ }^{1}$, Gemma De las Cuevas ${ }^{1}$, Tim Netzer ${ }^{2}$

${ }^{1}$ Institute of Theoretical Physics, Universität Innsbruck, Technikerstr. 21a, A-6020 Innsbruck, Austria
${ }^{2}$ Department of Mathematics, Universität Innsbruck, Technikerstr. 13, A-6020 Innsbruck, Austria

## Open problem 1: do there exist NPT bound entangled states?

Consider a bipartite quantum state $\rho \in \mathcal{M}_{d_{1}} \otimes \mathcal{M}_{d_{2}}$.
Def. partial transpose: $\quad \rho \mapsto\left(\operatorname{id}_{d_{1}} \otimes T_{d_{2}}\right) \rho=\rho^{T_{2}}$.

Example: $\begin{aligned} \frac{1}{2} & \left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right) \\ \geqslant 0 & \\ \geqslant & \\ & \\ & \neq 0\end{aligned}$

- PPT: Positive Partial Transpose $\rho^{T 2} \geqslant 0$
- NPT: Negative Partial Transpose $\rho^{T 2} \nsupseteq 0$

NPT $\Longrightarrow$ entangled state
in Alice \& Bob \&s

Goal: share $\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle$
Tools: Local Operations \& Classical Communication (LOCC)
Reality: $\rho$ (noisy, mixed, ...)
Entanglement distillation:

$$
n \text { copies } \wedge^{\wedge} \rho \xrightarrow{\rho} \xrightarrow{\text { LOCC }}\left|\phi^{+}\right\rangle
$$

Is this possible?

- yes: $\rho$ distillable
- no: $\rho$ bound entangled

PPT $\Longrightarrow$ un-distillable

NPT bound entangled?


Quantum states

Open problem 2: Do there exist non-trivial tensor-stable postive maps?
Linear map: $\mathcal{P}: \mathcal{M}_{d_{1}} \rightarrow \mathcal{M}_{d_{2}}$


- Positive ( $\mathcal{P} \succcurlyeq 0$ ) : if $X \geqslant 0$ then $\mathcal{P}(X) \geqslant 0$.
- Completely positive (cp): $\mathrm{id}_{d} \otimes \mathcal{P} \succcurlyeq 0$ for all $d$.
- Completely co-positive (co-cp): $\mathcal{P}=T \circ \mathcal{S}$, with $\mathcal{S} \mathrm{cp}$.

- $n$-tensor-stable positive : $\mathcal{P}^{\otimes n} \succcurlyeq 0$ for some $n \in \mathbb{N}$
- tensor-stable positive (tsp) : $\mathcal{P}^{\otimes n} \succcurlyeq 0$ for all $n \in \mathbb{N}$ 'trivial' tsp maps: $\mathrm{cp} \cup \mathrm{co}-\mathrm{cp}$


Theorem 1: connection NPT bound entanglement and tsp (Mu16)
If there exists a non-trivial tensor-stable positive map $\mathcal{P}: \mathcal{M}_{d_{1}} \rightarrow \mathcal{M}_{d_{2}}$, then there exist NPT bound-entangled states in $\mathcal{M}_{d_{1}} \otimes \mathcal{M}_{d_{1}}$ as well as in $\mathcal{M}_{d_{2}} \otimes \mathcal{M}_{d_{2}}$

## Computational complexity: undecidability

A decision problem is undecidable if there cannot exist an algorithm that gives the correct answer (yes/no) to every input.
Prove via reduction from another undecidable problem:


## Problem MPO: undecidable (De16)

Given a Matrix Product Operator de-
fined by $C_{i}$, is $\tau_{N}(C) \geqslant 0$ for all $N$ ?


Reduction $V$
Problem Bell pairs: undecidable
Given $d$ and a linear map $\mathcal{P}: \mathcal{M}_{d} \rightarrow$ $\mathcal{M}_{d}$, is $\mathcal{P}^{\otimes n}$ (Bell pairs) $\geqslant 0$ for all $n$ ?


Reduction $X$
Problem TSP
Given $d$ and a linear map $\mathcal{P}: \mathcal{M}_{d} \rightarrow$ $\mathcal{M}_{d}$, is $\mathcal{P}^{\otimes n} \succcurlyeq 0$ for all $n$ ?

Proving undecidability of Problem TSP would imply existence of NPT bound entangled states.

## Field extensions: the hyperreals

The hyperreals * $\mathbb{R}$ have additional infinitesimal elements $\epsilon$.

| -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-3 \epsilon$ | $-2 \epsilon$ | $-\epsilon$ | 0 | $\epsilon$ | $2 \epsilon$ | $3 \epsilon$ |

Positive infinitesimal elements $\epsilon>0 \in{ }^{*} \mathbb{R}$ are smaller then all $r \in \mathbb{R}$. The hypercomplex ${ }^{*} \mathbb{C}$ are defined as usual: ${ }^{*} \mathbb{C}={ }^{*} \mathbb{R}+i{ }^{*} \mathbb{R}$.

## Theorem 2: Non-trivial tsp

There exist non-trivial tensor-stable positive maps $\mathcal{P}: \mathcal{M}_{d_{1}}\left({ }^{*} \mathbb{C}\right) \rightarrow$ $\mathcal{M}_{d_{2}}\left({ }^{*} \mathbb{C}\right)$ on the hypercomplex.
When transferred back to $\mathbb{C}$ however, the maps are trivial again.
Theorem 1 still holds on ${ }^{*} \mathbb{C}$. Therefore:
Theorem 3: NPT bound entanglement
There exist NPT bound entangled states on ${ }^{*} \mathbb{C}$.
These results can not (yet) be interpreted in a physical way.

## Outlook and ongoing work

1. Explore other undecidable problems and provide a reduction to Probem TSP.
2. Prove existence of non-trivial tsp maps and NPT bound entanglement in an infinite dimensional Hilbert space.
