

Entangling Single Atoms Over 33 km Telecom Fibre

Pooja Malik, Tim van Leent, Florian Fertig, Yiru Zhou, Anastasia Reinl, Wei Zhang and Harald Weinfurter

Ludwig-Maximilians-Universität, Fakultät für Physik, Schellingstr. 4, 80799 München Max-Planck-Institut für Quantenoptik, 85748 Garching Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München

Abstract

Quantum repeaters will allow scalable quantum networks, which are essential for large scale quantum communication and distributed guantum computing. A crucial step towards a quantum repeater is to achieve heralded entanglement between stationary quantum memories over long distances. To this end, we present results demonstrating heralded entanglement between two Rb-87 atoms separated by 400 m line-of-sight, generated over telecom fibre links with a length up to 33 km [1].

To entangle the two atoms, we start with entangling the spin state of each atom with the polarisation state of a photon in each node via synchronised during the spontaneous decay. excitations The emitted photons (780 nm) are then converted to the low loss telecom S band (1517 nm) via a polarisation preserving frequency conversion to overcome high attenuation loss in optical fiber [2].

The long fibre links guides these photons to a middle station where a Bell-state measurement swaps the entanglement to the atoms. Finally, the atomic states are analysed after a delay that allows for two-way communication between the nodes and the BSM over the respective fibre length. We observe loss in fidelity for longer fibre links due to the limited atomic coherence time.

