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-Projection measurement of the photons 
onto entangled two-photon Bell-state 

-Indistinguishable photons in spatial, 
temporal and spectral degree of freedom

-Visibility Vtwo-photon : 0.95  

-Limited by experimental imperfections, 
eg., imperfect time overlap and by double 
excitations events

Entangling Atoms Using Telecom Photons 

Atom-Atom Entanglement over Long Fiber Links

-Measured 6 setting along three bases X, Y and Z 

-Fidelity estimation includes mF = 0 substate and is given by F =              where     is the average contrast given by

-Success probability is 3.66 x 10-6 and 1.22 x 10-6 for the shortest and the longest link

-Event rate is 1/9 and 1/85 events/sec for the shortest and the longest link

-Memory decoherence is responsible for the loss in the fidelity for long fibre links
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Decoherence Mechanisms

Standing wave dipole trap 

Coherently transfer the qubit to magnetic-field 
insensitive qubit basis [3]
 
Strong guiding field along z-axis to suppress 
field fluctuations in x and y-axis

Raman sideband cooling

Circular polarisation of ODT

Longitudinal polarisation components due to 
tight focusing of ODT (2 μm)

External magnetic fields stabilised to 0.5 
mG

Improving Coherence Time 

Abstract
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Atom-Photon Entanglement

Atom-Atom Entanglement

Atomic State Readout

Methods

Entanglement swapping between two
atom-photon pairs at BSM in H/V basis:
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Experimental Setup

Event Rate over Fiber Length

Quantum Frequency Conversion (QFC)

Polarisation Preserving QFC [2]
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Quantum repeaters will allow scalable quantum networks, 
which are essential for large scale quantum communication 
and distributed quantum computing. A crucial step towards 
a quantum repeater is to achieve heralded entanglement 
between stationary quantum memories over long 
distances. To this end, we present results demonstrating 
heralded entanglement between two Rb-87 atoms 
separated by 400 m line-of-sight, generated over telecom 
fibre links with a length up to 33 km [1].

To entangle the two atoms, we start with entangling 
the spin state of each atom with the polarisation 
state of a photon in each node via synchronised 
excitations during the spontaneous decay.  
The emitted photons (780 nm) are then converted to 
the low loss telecom S band (1517 nm) via a 
polarisation preserving frequency conversion to 
overcome high attenuation loss in optical fiber [2]. 

The long fibre links guides these photons to a middle 
station where a Bell-state measurement swaps the 
entanglement to the atoms. Finally, the atomic states 
are analysed after a delay that allows for two-way 
communication between the nodes and the BSM over 
the respective fibre length. We observe loss in fidelity 
for longer fibre links due to the limited atomic 
coherence time.

-Difference frequency generation

  in PPLN waveguide:-

 

-External device efficiency of 57%

-Spectral filtering with cavity to 27MHz FWHM

-Signal-to-background ratio > 50

-L = L1+ L2= 3 km + 3 km

-Back propagation of hearlding signal 
implemented by additional waiting 
times

-Average visibility VA1A2 : 0.804(20) and 
0.784(23) for         and        
respectively 

-Extracted CHSH S value of 2.244(63)
violates the limit of S = 2 with 3.9


